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Abstract

This paper benchmarks stochastic finite element methods
(SFEM) using Wiener-Askey polynomial chaos for solv-
ing the Poisson equation with uncertain permittivity in a
biological cell model. We compare non-intrusive (least-
squares, projection) and spectral (SSFEM) methods, using
uniform random variables for the permittivity. Results show
that projection and SSFEM methods accurately estimate the
electric potential at a significantly reduced computational
cost compared to Monte Carlo, paving the way for efficient
statistical analyses. This could for example be applied to
model the electroporation phenomena.

1 Introduction

Uncertainty quantification (UQ) has become increasingly
important in various scientific and engineering disciplines
[7] [6]. A straightforward and widely used UQ method
is the Monte Carlo simulation. However, its high compu-
tational cost often limits its applicability, especially when
dealing with complex models and numerous uncertain pa-
rameters.

Stochastic finite element methods (SFEM) have emerged as
a powerful class of UQ techniques, particularly in the field
of mechanics [2, 8]. While less prevalent in the literature,
SFEM has also found applications in electromagnetism [4],
offering the potential for more efficient uncertainty analysis
in this domain. These methods discretize random variables
via polynomial chaos expansion (PCE) [5], representing the
stochastic solution with orthogonal polynomials. SFEM
can be non-intrusive, treating the deterministic solver as a
"black box," or intrusive, modifying the code to include the
stochastic discretization.

The primary objective of this paper is to compare the per-
formance of intrusive and non-intrusive SFEM approaches
against the Monte Carlo method applied to static model of
a biologic cell. Indeed, this is vital to achieve high accu-
racy in this case, in particular to model the electroporation
phenomena [9].

Here, we first present two non-intrusive methods, the least-
squares minimization method and the projection method
based on Gauss quadrature, and then an intrusive one, the
spectral stochastic finite element method (SSFEM). A com-
parative analysis, in terms of accuracy and computation

times, of these methods for a realistic test case involving an
electric field applied to a biological cell is also proposed. In
addition, we show that using PCE it is then fast to conduct a
statistical analysis, such as computing confidence interval.

2 Model and mathematical framework

Let Ω1 be a rectangular domain, with Ω2 and Ω3 two sub-
domains such that Ω3 ⊂ Ω2 ⊂ Ω1, see Figure 1. This cor-
responds for example to a biological cell.
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Figure 1. Geometric configuration of the model

Let (Θ,F ,P) be a probability space. In this work, we con-
sider ε1, ε2, and ε3 as random variables, denoted by ε1(θ),
ε2(θ), and ε3(θ) respectively, where θ represents a ran-
dom event in Θ. This leads to a stochastic formulation of
the problem, where the electric potential u also becomes a
random variable, denoted by u(x,θ), which is solution of



−∇ · (εi(θ)∇ui(x,θ)) = fi(x) in Ωi, i = 1,2,3
u = 0 on Γd
∂u
∂n = 0 on Γn

ui = u j on Γi, j

εi
∂ui
∂n = ε j

∂u j
∂n on Γi, j

(1)

We work in Sobolev space V = {v ∈ H1(Ω) |v = 0 on Γl ∪
Γr} with test functions v ∈ V ⊗L2(Θ) [1], yielding a well-
posed variational formulation by Lax-Milgram theorem [4].



The deterministic finite element method is unsuitable for
the random variable u(x,θ). We thus propose to use the
PCE [5], which projects the random variables onto a basis
of orthogonal polynomials in the random space. Let ξ =
(ξ1, ...,ξN) be a vector of M independent random variables,
here for example we have M = 3. The PCE of a random
variable X(θ) with finite variance is obtained by

X(θ) = ∑
α

xα Ψα(ξ ), (2)

where α is a multi-index, xα are deterministic coefficients,
and Ψα(ξ ) are multivariate orthogonal polynomials. The
PCE is truncated to a finite degree p, resulting in a finite-
dimensional space. This space contains P =

(M+p
p

)
multi-

variate polynomials. The choice of univariate polynomials
is in general obtained from the Wiener-Askey scheme [10],
relating the polynomial type to the probability distribution
of the corresponding random variable (e.g., Hermite for
Gaussian, Legendre for uniform).

3 Stochastic finite element methods

3.1 Non-intrusive methods

For non-intrusive methods, the main idea is to use this
discretization outside the finite element without modifying
existing deterministic codes (one example is Monte Carlo
method). They rely on a sequential double discretization:
first, a spatial discretization, analogous to the deterministic
case, and then a probabilistic one.

The spatial discretization using the deterministic finite ele-
ment method applied to equation (1) leads to the following
approximation

u(x,θ)≈ uN(x,θ) =
N

∑
n=1

ũnBn(x), (3)

where uN approximates u in subspace VN (basis functions
Bn(x)) with nodal values ũn, and convergence is guaranteed
by Cea’s lemma. Assuming finite variance, we use poly-
nomial chaos expansion on nodal values ũn(θ) and project
onto the polynomial chaos space, analogous to spatial pro-
jection, yielding the surrogate model

uNP(x,θ) =
N

∑
n=1

P

∑
p=0

ũp
nΨ

p(ξ (θ))Bn(x), (4)

where ξ (θ) = (ξ1(θ), ...,ξM(θ))) is a vector of indepen-
dent random variables with respect to the orthogonal basis.
The goal is then to determine the basis coefficients ũp

n . Here
we present two different methods.

3.1.1 Least-Square Minimisation method

The problem can be formulated as finding the coefficients
ũn that minimize the expected squared difference between
the finite element solution u(i)NP and its PCE [3]. This ex-
pectation is approximated using an empirical mean over a

set of d samples, T = {ξ
(i), i = 1, ...,d}, leading to the dis-

cretized problem:

ûn = arg min
un∈RP

1
d

d

∑
i=1

(u(i)NP −
P

∑
p=0

ũp
nΨ

p(ξ (i))

)2
 . (5)

The solution of (5) can be obtained by solving Aũn = γ ,
where γ =

{
u(1)NP, ...,u

(d)
NP

}
is the vector of deterministic fi-

nite element solutions at each ξ i and A the information ma-
trix such that Ai, j = Ψ j(ξ (i))). The solution is given by [8]:

ũn = (AT A)−1AT
γ. (6)

To ensure the problem is well-posed, the number of un-
known coefficients P must be smaller than the size of the
experimental design, d. This problem can be seen as a com-
pressed sensing one to optimize d [7].

3.1.2 Projection method

We present here a second method [2] to obtain the coeffi-
cients. Indeed, since the polynomial chaos is an orthonor-
mal basis, we have

ũp
n =

E[ũn(θ)Ψ
p(ξ (θ))]

E[(Ψp)(ξ (θ))2]
. (7)

The denominator can be computed analytically due to the
independence of the ξi and the properties of orthogonal
polynomials. The core challenge her lies in evaluating the
numerator, E [ũn(θ)Ψ

p(ξ (θ))]. To compute this expecta-
tion, we employ a quadrature rule tailored to the Wiener-
Askey polynomial chaos corresponding to the distribution
of ξ (θ). The accuracy of the Gauss quadrature depends on
the degree d and the smoothness of the function being in-
tegrated. Higher degrees generally lead to higher accuracy
but also increase the computational cost.

3.2 Intrusive Method: Spectral Stochastic
Finite Element Method

In this section, we present an intrusive approach, where the
code is completely modified to account for the uncertainty.
We start with the variational form of (1)

E
[∫

Ω

ε(x,θ)∇u(x,θ) ·∇v(x,θ)dx
]

= E
[∫

Ω

f (x)v(x,θ)dx
]
.

(8)

Then we discretize the spatial domain using Galerkin’s
method with basis functions Bn(x) and represent the ran-
dom variables u(x,θ) and ε(x,θ) using the PCE

u(x,θ)≈
N

∑
n=1

P

∑
p=0

up
nBn(x),Ψp(ξ (θ)) (9)



and

ε(x,θ)≈
M

∑
m=1

P̃

∑
p̃=0

εm,p̃(x)Ψ p̃(ξ (θ)). (10)

Then, substituting these expansions into (8) and choosing
test functions v(x,θ) = Bi(x)Ψ j(ξ (θ)), we obtain a cou-
pled system of equations. Using the orthogonality of the
polynomial chaos basis, we obtain

N

∑
n=1

P

∑
p=0

up
n

(
M

∑
m=1

P̃

∑
p̃=0

εm,p̃P
pp̃ j
∫

Ω

∇Bn ·∇Bi dx

)
=
∫

Ω

f Bi dxE[Ψ j],

(11)

where P pp̃ j = E
[
ΨpΨp̃Ψ j

]
can be pre-computed analyti-

cally. This finally leads to the following linear system

Avec(Mu) = b, (12)

where vec(Mu) contains the unknown coefficients up
n , A

is the global stiffness matrix assembled from element con-
tributions, and b is the load vector. Solving this system
yields the coefficients up

n and thus to the desired surrogate
model (9). To manage the computational cost of large ma-
trices in high-dimensional, high P problems, strategic eval-
uation point selection is crucial [6].

4 Numerical Results

The goal here is to compare the presented methods using
a realistic scenario . In this case, let Ω1 be A 10x10 µm
square domain, that contains a biologic cell modeled by cir-
cular subdomains Ω2 (3.1 µm radius, cytoplasm) and Ω3
(3 µm radius, nucleus), implicitly defining the membrane.
Permittivity are modeled as uniform random variables, with
ε1 ∼ U(67,80), ε2 ∼ U(2,12) and ε3 ∼ U(60,80), from
[9]. As an example we show the resulting potential dis-
tribution in the deterministic case in Figure 2.

Figure 2. Potential computed on the whole domain from
the deterministic method with ε1 = 73.5, ε2 = 7 and ε3 =
70.

In Figure 3, we plot the evolution of the mean value of
the potential along an equatorial cut of the cell (shown as

a dotted line in Figure 1). The potential calculated using
the deterministic method, evaluated here at the mean of
the permittivity intervals, is also displayed. Since the two
non-intrusive methods are theoretically equivalent, only the
mean potential obtained from the projection method is plot-
ted.

Figure 3. Comparison of the mean electric potential along
the equator of the cell

As expected, Figure 3 shows that the computationally ef-
ficient SSFEM and projection methods accurately capture
the mean potential, closely matching the Monte Carlo re-
sults. While the deterministic solution is accurate in Ω1
and Ω3, discrepancies appear in Ω2, highlighting the im-
pact of uncertainties. A comparison of the quadratic (Quad)
and maximum (Max) errors for the potential, as well as the
second-order moment (which is expected to increase the er-
ror), and the computation times for each method against
Monte-Carlo is presented in Table 1.

Method Time(s) Quad_Pot Max_Pot Quad_M2 Max_M2
SSFEM 16.6 0.00008 0.00126 0.00245 0.06752

Projection 10.4 0.00002 0.00015 0.00049 0.02282
Least square 10.3 0.00002 0.00015 0.00049 0.02282

Table 1. Comparison of quadratic and maximum errors,
and computation times for different methods, relative to the
Monte-Carlo method.

As the table clearly shows, the high error at the membrane
points visible in Figure 3 significantly affects the quadratic
error. The slightly higher error of SSFEM could be due to
mesh refinement or conditioning. In our case, the Monte-
Carlo method took ∼ 26542 seconds to converge, while the
non-intrusive methods took ∼ 10 seconds and the SSFEM
took ∼ 16 seconds, which can be further reduced by care-
fully choosing the points [7] [6].

As expected, the convergence time of these methods is dras-
tically lower than Monte-Carlo. The efficiency of these
methods enables statistical studies beyond the reach of



Monte Carlo, such as the 95% confidence interval shown
in Figure 4, computed here using the projection method.

Figure 4. 95% confidence interval

Wilder confidence intervals at domain interfaces reflect per-
mittivity discontinuities, while narrower intervals in Ω3
suggest less potential variation. Stochastic finite element
methods also provide other uncertainty metrics like failure
probabilities or Sobol indices.

5 Conclusion

In this article, we compared different stochastic finite ele-
ment methods to solve the Poisson equation with uncertain
permittivity, modeled as uniform random variables. We ap-
plied these methods to a realistic test case of a biological
cell, where the permittivity of the different domains (extra-
cellular medium, cytoplasm, nucleus) were subject to vari-
ability. The numerical results demonstrated the efficiency
of the non-intrusive methods and the SSFEM method in
capturing the mean behavior of the electric potential, with
an accuracy comparable to that of Monte Carlo simulations,
but with a significantly reduced computational cost. They
pave the way for in-depth statistical analyses, such as the
determination of confidence intervals or the calculation of
sensitivity indices, which would be inaccessible with Monte
Carlo simulations due to their prohibitive cost.

Future work will include a better choice of interpolation
points, which will reduce the error of the SSFEM when
moving to a finer mesh using recently developed methods
such as the Gram-Schmidt orthogonalization algorithm [6].
Our aim is to move towards higher-dimensional problems,
specifically with applications in radar stealth technology.
This will involve utilizing boundary finite elements, ad-
dressing the inherent complexities that arise. Moving to
higher dimensions also implies working on random fields,
which requires new discretization methods.
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