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Abstract—Modeling electromagnetic wave propagation over
long distances is crucial for radar systems and navigation
applications. This work introduces a split-step method based on
wavelet frames to model tropospheric long-range propagation.
This approach capitalizes on a fully wavelet-to-wavelet frame-
work, designed to enhance computational efficiency, accuracy,
and ease of implementation on GPUs. Numerical experiments
in the VHF frequency band demonstrate the effectiveness and
advantages of the proposed method.

Index Terms—long-range propagation, parabolic wave equa-
tion, split-step, wavelet, frames

I. INTRODUCTION

Efficient computational methods for modeling tropospheric
long-range propagation are essential for various applications,
including optimized antenna placement and radar coverage
prediction. In this context, the parabolic wave equation (PWE)
asymptotic model [1] has become a widely adopted approach.
Indeed, by considering only the forward propagation, the latter
enables using a coarser grid along the propagation direction,
drastically reducing the computation time. Moreover, with this
model, we can consider the relief, the refraction, and the
ground composition.

In particular, the split-step Fourier [1], [2] (SSF) method
has been widely used to solve the PWE efficiently. The SSF
method iteratively computes the field by alternating between
the spectral and spatial domains. Its efficiency arises from the
diagonal structure of the scattering operator in the spectral
domain. However, for large-scale 2D or 3D domains [3],
the SSF method becomes impractical due to high memory
requirements and computational complexity.

To address these limitations, wavelet-based split-step meth-
ods have been recently proposed [4]–[6]. These methods
reduce computation time and memory usage while maintaining
a good level of accuracy, leveraging the high compression
rates achievable in the wavelet domain [7]. Most of these
approaches rely on wavelet bases. Additionally, a full wavelet-
to-wavelet split-step method has been introduced in [8] to
improve computational efficiency further. However, wavelet
bases have the drawback of losing the translation-invariance
property, which complicates the scattering operator. Further-
more, certain operations must still be performed in the spatial
domain to ensure adequate accuracy.

To overcome some of the aforementioned limitations. We
propose here a fully wavelet-to-wavelet split-step method,

called split-step framelet (SSFW), using wavelet frames [7]
instead of wavelet bases to preserve the translation-invariance
property, thereby simplifying the scattering operator and en-
hancing computational efficiency. In addition, the wavelet
frame-based operations can more easily be implemented on
GPU.

II. THE PROPAGATION MODEL

A. Notations, assumptions, and discretization

In this work, we adopt a Cartesian coordinate system (x, z),
where x represents the propagation direction and z denotes
the altitude. The refractive index is denoted by n(x, z), and
we assume it varies slowly along the x-direction. The field is
modeled with a time dependence of exp(jωt), where j is the
imaginary unit and ω is the angular frequency.

We consider a source located at xs ≤ 0, with the field
specified at x = 0. We aim to compute the field over the
ground to a maximum range xmax. The computational domain
is thus defined as Ω = [0, xmax]× [0, zmax].

For numerical purposes, the domain is discretized along
both axes, with Nx and Nz denoting the number of points in
the x- and z-directions, respectively. The resulting mesh sizes
are ∆x = xmax/Nx and ∆z = zmax/Nz . A discrete represen-
tation of any function u(x, z) is expressed as u[nx, nz], where
nx ∈ {0, . . . , Nx−1} and nz ∈ {0, . . . , Nz−1}. Additionally,
ux[nz] refers to the semi-discretized version of u along z.

Finally, here we work in a transverse electric configuration,
but it can easily be generalized to the transverse magnetic case.

B. The parabolic wave equation (PWE) model

To compute forward long-range propagation up to the
maximum range xmax, we employ the widely used parabolic
wave equation (PWE) [2], [3], [5], [8]. Denoting the reduced
field by u(x, z), the PWE is expressed as [1]:

∂u

∂x
= −j

(√
∂2

∂z2
+ k2 − k

)
u− jk (n− 1)u, (1)

where k is the wavenumber. The PWE is an asymptotic form
of the Helmholtz equation that accounts only for forward
propagation within a paraxial cone of 45◦ along the x-axis [1].
Since eq. (1) is an ordinary differential equation along x, it
supports larger discretization steps in this direction, making
it highly efficient for our application. Additionally, the PWE



allows us to account for the effects of the refraction, the terrain
relief, and the ground composition [1].

III. SPLIT-STEP FRAMELET (SSFW)
In this section, we present an efficient wavelet frame-based

method to solve eq. (1), leveraging wavelet frames. The latter
is called split-step framelet and is denoted from here on as
SSFW.

A. A brief introduction on wavelet frames

Frames can be seen as a generalization of bases, where the
family can be redundant. More formally, denote (χn)n as a
countable family, and u as the reduced field. The family (χn)n
is a frame if

A∥u∥2 ≤
∑
n

| ⟨u, χn⟩ |2 ≤ B∥u∥2,

where 0 < A < B, and ⟨·, ·⟩ is the corresponding scalar prod-
uct. If A = B, then the frame is said to be tight. Furthermore,
we have an energy conservation property. Therefore, we only
use wavelet frames with A = B = 1 in the following.

One question that can arise is why use wavelet frames
instead of a wavelet basis? The main problem with the
wavelet basis is that translation invariance is not preserved,
since subsampling is needed in the fast wavelet transform [7]
(FWT). Using wavelet frames allows us to keep the translation
invariance property and manipulate vectors of the same size.
The latter two properties are important for accurate propa-
gation computation. Also, note that the first level n = 0
corresponds here to the scaling function [7].

Furthermore, wavelet frames are better for GPU implemen-
tation even if the FWT is computationally efficient. Indeed,
computing ⟨u, χn⟩ amounts to convolution with wavelets that
have compact support and can thus be efficiently computed in
the spatial domain. However, we can also opt for a Fourier
transform-based convolution in this case since the fast Fourier
transformed library is highly efficient on GPU.

In particular, in the following, since in 2D, it has been
shown that the wavelet family has almost no impact on the
accuracy [4], we use the Haar family. This allows us to have
a symmetric scaling function and an antisymmetric wavelet
function, which is useful to efficiently handle the ground, as
will be seen later on. Nonetheless, most of the parts can be
generalized to other families.

To conclude this part, we denote the wavelet frame trans-
form of any function, such as u, by an upper case, e.g. U .
In this case U [l, p] corresponds to the coefficient at level
l ∈ [0, L] and position p ∈ [0, Nz − 1].

B. Description of SSFW

The SSFW algorithm builds upon the wavelet-to-wavelet
split-step wavelet method (wSSW) introduced in [8]. It is an
iterative algorithm for computing the field u entirely within the
wavelet domain, differing from the original split-step wavelet
(SSW) method [4], [5], as no spatial operators are required.

First, a redundant wavelet transform, Sw, over L levels is
applied to the initial field u0 of size Nz , resulting in U0 of

size L×Nz . To reduce computational effort, a hard threshold
compression operator, CVs , is applied:

U0 = CVs
Swu0, (2)

where Vs is the threshold chosen to ensure high accuracy while
significantly reducing the number of elements in U0. Unlike
wSSW [8], where a wavelet basis is used, SSFW relies on
a frame, making the vector L times larger. Nevertheless, the
number of nonzero coefficients, Ns ≪ Nz , remains low.

Then, propagation from x to x+∆x is carried out in three
main steps:

1) Wavelet-domain propagation: Using a precomputed,
compressed local scattering operator PVp , propagation
is performed as:

U fs
x+∆x = PVp

Ux. (3)

This operator is constructed as in [5] by computing the
redundant wavelet transform of a propagated wavelet of
each level. This propagation is calculated using the SSF
scheme. Since a frame is used, the translation invariance
property ensures that only one propagator per level
is needed, reducing the scattering operator’s size. The
propagation step is described in more detail in the next
section.

2) Refraction and apodization: The phase screen R and
the apodization A (Hamming window) operators are
directly applied in the wavelet domain. Unlike [8], no
additional transformation is required, as R operates
directly on all L levels:

UR
x+∆x = ARU fs

x+∆x. (4)

3) Compression: A hard threshold compression is applied
again to retain only significant coefficients:

Ux+∆x = CVsU
R
x+∆x. (5)

These steps are repeated iteratively until xmax, at which
point an inverse redundant wavelet transform is applied to
recover the field. While the approach of SSW [4], [5] involves
alternating between wavelet and spatial domains, the SSFW
method avoids this, by applying the wavelet transform only
at the start and end. This significantly reduces computational
complexity, and memory usage, and enhances efficiency, par-
ticularly for GPU implementation.

C. Propagating in the wavelet domain

As detailed in the previous section, the scattering operator
PVp contains the wavelet transform of L propagated wavelets.
This operator is structured as a tensor of size L×L×Nz , where
L represents the number of wavelets to propagate, and L ×
Nz corresponds to the coefficients generated by the redundant
wavelet transform.

The propagation step in the wavelet domain is computed as

Ux+∆x[l
′] =

∑
l

Ux[l]⊗ P [l][l′], (6)



where ⊗ denotes the convolution operation. Unlike SSW,
the use of frames with translation invariance enables direct
computation of the coefficients at each level via convolution.
This significantly simplifies the GPU implementation of the
method by avoiding additional transformations. In terms of
computational complexity, the use of frames increases the
overall cost of SSW by a factor of L, which remains relatively
low in most cases. This makes the method both efficient and
well-suited for practical applications.

D. Accounting for the ground

Assuming the ground is a perfect electric conductor, we
provide a local image method for frames that allows account-
ing for the ground directly in the wavelet domain at almost
no cost. In a few words, the local image method [5] accounts
for the ground by adding a thin image layer in the spatial
domain. In this layer, reflection is accounted for by adding an
antisymmetric replica. Nonetheless, since a wavelet basis was
used in [4], [5], [8], one could not directly incorporate it in the
wavelet domain even in [8], where the propagator is modified
near the ground if needed. Here, with frames, we propose a
local image method in the wavelet domain.

Proposition 1 (A wavelet local image method). Assuming we
use the Haar wavelet family and L = 2. For all levels 0 to 2,
we add Nim ≪ Nz points at the beginning of each vector of
size Nz , leading to U im

x , and we set

∀(l, p) ∈ [0, L]× [0, Nz − 1], U im
x [l, Nim + p] = Ux[l, p].

Due to the antisymmetry of the Haar wavelet, for level L then

∀p ∈ [0, Nim − 1], U im
x [2, p] = Ux[2, Nim − 1− p],

corresponding to a symmetric replication. For the level l = 1,
this leads to

∀p ∈ [0, Nim − 3], U im
x [1, p] = Ux[1, Nim − 3− p],

U im
x [1, Nim − 2] = 3Ux[2,0]+Ux[2,1]

2 ,

U im
x [1, Nim − 1] = 3Ux[2,0]+Ux[2,1]

2 .

Finally, for the scaling function, i.e. the level l = 0, which is
symmetric, this leads to

∀p ∈ [0, Nim − 3], U im
x [0, p] = −Ux[0, Nim − 3− p],

U im
x [0, Nim − 2] = Ux[2,0]+Ux[2,1]

2 ,

U im
x [0, Nim − 1] = −Ux[2,0]+Ux[2,1]

2 .

Proof. The proof of the proposition follows directly from
calculating the wavelet coefficients Ux and U im

x . For this,
we use the filter coefficients of the Haar redundant wavelet
transform, given by:

h0 =
[
1
2 ,

1
2

]
, g0 =

[
− 1

2 ,
1
2

]
, h1 =

[
1
2 , 0,

1
2

]
, g1 =

[
− 1

2 , 0,
1
2

]
.

Let u = [0, u1, u2, . . . , uNz−1] represent the vector of the
reduced field, and

uim = [−uNim
, . . . ,−u2,−u1, 0, u1, u2, . . . , uNz−1]

denote its local image replica in the spatial domain. The
computation of the wavelet coefficients is then achieved by

cascading convolutions of u or uim with these filters. Finally,
we obtain the proposed results by comparing the expression
of U im

x and Ux.

The proposition and proof have been presented for the Haar
wavelet but can be extended to other wavelet families with
symmetry and antisymmetry properties. Moreover, the method
is generalizable to any maximum level L. Additionally, a
dielectric ground can be incorporated by using the Fresnel
coefficient.

This implementation significantly reduces the complexity
compared to [4], [5], [8], as all computations are performed
entirely in the wavelet domain. Furthermore, it facilitates a
more efficient GPU implementation, enhancing computational
performance. Since, the GPU implementation is not the core of
the paper, here we use the functions provided by the PyTorch
package of Python.

IV. NUMERICAL TESTS

In this section, numerical tests are performed to validate
the method by comparing it with SSF and highlighting its
advantages over SSW.

A. Free-space propagation

To validate the method, we consider a simple scenario with
a domain size of 5 km and 2048 m in the x and z directions,
respectively. The source is a complex source point (CSP) with
a width of w0 = 5 m, placed at xs = −50 m and zs = 1024 m.
Setting n = 1 allows us to simulate free-space propagation.
In this case, we expect SSFW to produce results comparable
to SSW.

For thresholds, we use Vs = 10−3∥u0∥∞ and Vp =
10−5∥P∥∞, leading to an expected error below −30 dB when
compared to SSF [9]. The method is tested for different
maximum levels of decomposition, specifically L ∈ {1, 2}.
Figure 1 shows the reduced field at xmax for SSF (solid line)
and SSW, SSFW, and SSFW/GPU (dashed lines) when L = 1.
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Fig. 1. Reduced field u in dB at xmax computed with different methods.

In addition, Table I provides the computation times needed
for the different methods and levels L. We also show the
different maximum differences with SSF.



TABLE I
COMPARISON OF SSW, AND SSFW ON CPU OR GPU REGARDING

COMPUTATION TIME AND ACCURACY.

SSW SSFW SSFW/GPU
L 1 2 1 2 1 2
Time (s) 0.063 0.11 0.062 0.13 1.6 1.7
Error (dB) -50.2 -50.9 -51.5 -54.4 -49.7 -50.4

Figure 1 and Table I demonstrate that the proposed SSFW
method achieves accuracy comparable to SSW and closely
matches the results from SSF. The only discrepancy between
SSFW and SSF arises from the hard threshold compression
applied in the former. As anticipated, the computation times
for SSW [5] and SSFW are nearly identical, although this
particular scenario does not fully showcase the advantages of
SSFW, as it does not involve ground effects or refraction.
Regarding the GPU implementation, a similar observation
holds: the domain size in this case is relatively small, so
the CPU implementation performs better. Additionally, the
GPU implementation is carried out using PyTorch’s built-in
functions, without further optimization in this instance

B. Propagation in an atmospheric duct over a planar ground

In this test, we consider a larger domain that includes ground
reflections and a tropospheric duct. Specifically, the domain
spans 30 km in x and 512 m in z. The source is the same as
before, except that it is positioned at zs = 50 m, with a width
of w0 = 5 m. Additionally, we incorporate a PEC ground and
model the atmospheric duct using a tri-linear refractive index
profile. The wavelet parameters remain unchanged, and the
field computed at the final iteration is shown in Figure 2. In
addition, as for the previous test, we provide a comparison in
Table II.
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Fig. 2. Reduced field u in dB at xmax computed with different methods for
the realistic test case.

Here, the accuracy of SSFW surpasses SSW’s, while main-
taining a similar computation time. Unlike the approach in [8],
incorporating refraction and the local image method directly
in the wavelet domain introduces no additional error. This
validates both the developed strategy and the use of frames.

TABLE II
COMPARISON OF SSW, AND SSFW ON CPU OR GPU REGARDING

COMPUTATION TIME AND ACCURACY FOR THE SECOND TEST.

SSW SSFW SSFW/GPU
L 1 2 1 2 1 2
Time (s) 0.1 0.21 0.09 0.18 1.8 1.9
Error (dB) -52.8 -51.7 -72.5 -64.9 -51.5 -43.9

The computation time for the GPU implementation remains
comparable to that of the previous test, despite slight accuracy
differences attributed to the PyTorch implementation. These
results confirm the method’s effectiveness, emphasize its ad-
vantages, and demonstrate the feasibility of GPU implemen-
tation, even though further optimization is necessary.

V. CONCLUSION

This article introduced SSFW, a wavelet frame-based
method for simulating tropospheric long-range propagation.
This approach employs a split-step method to iteratively
compute field propagation directly in the wavelet domain.
Furthermore, we proposed a local image method in the wavelet
domain to avoid the need for going back to the spatial domain.
Additionally, the use of frames simplifies the methodology
compared to SSW, enabling efficient GPU implementation.

Numerical tests validate the accuracy and effectiveness of
SSFW, compared to SSW. The inclusion of ground effects and
refraction directly in the wavelet domain does not introduce
any additional errors, further confirming the robustness of the
proposed approach.

Future work will focus on incorporating terrain reliefs,
which should be easily integrated using a staircase model
thanks to the translation invariance property of frames. More-
over, efforts will be directed toward optimizing the GPU
implementation to enhance its efficiency.
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