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Abstract—This paper presents a method to retrieve the form
of a metallic object given partial electromagnetic measurements.
We propose a numerical resolution of this inverse problem
based on a shape optimization method. More precisely, we aim
to minimize the so-called Kohn-Vogelius functional, which is
numerically more stable than the least squares functional, by
computing its shape gradient. The optimization problem is then
solved using a Nesterov inertial scheme to accelerate the descent
algorithm. Numerical simulations in 2D are provided to highlight
the efficiency of the proposed method.

Index Terms—Inverse scattering, Shape optimization, Kohn-
Vogelius functional, Nesterov scheme.

I. INTRODUCTION

In this article, we are interested in the electromagnetic
inverse scattering problem, e.g. retrieving the shape of an
object from radar cross-section measurements. In this context,
many inversion techniques have been developed, see, e.g., [1],
[2], [3], [4].

One can think for example of inverse synthetic-aperture
radar techniques, where the movement of the targets (or the
emitter) is used in order to obtain an image of the target [5],
[6]. Indeed, the movements introduce a Doppler effect that
helps to construct a high-resolution image of the object using
signal theory techniques.

Since the 90’s in acoustics (see, e.g., [7], [8], [9], [10]) and
the early 00’s in electromagnetic (see, e.g., [1], [2], [3]), the
shape optimization methodology has received increasing atten-
tion. Indeed, the main difference is that with this technique no
movements are needed to retrieve the shape of the target. The
main results have been obtained using either topological (as
in [9]) or level-set (as in [2], [10]) methods and by considering
mainly a least squares based cost functional. Furthermore, both
methods allow to retrieve complicated shapes and multiple
targets (see, e.g., [9], [2]). Besides, the choice of the least
squares functional is straightforward since the method of
moments (see [11]) is widely used to compute the scattered
field at a certain distance for complicated object shapes. In
those methods, after the calculation of the shape gradient,
conventional gradient descent schemes are used to minimize
the cost functional. Recently, the Nesterov accelerated gradient
descent has been introduced in the context of shape optimiza-
tion for acoustic inverse scattering problems in [10].

Nevertheless, in the shape optimization community, it has
been shown that another functional is more robust and numer-
ically stable than the least squares one: the Kohn-Vogelius

functional, used for example in [12]. This latter has been
used in particular for detecting objects immersed in fluids
in [13], where stability is very important. However, this latter
needs to compute the field over the whole domain, instead
of only on its boundary. With the rise of fast computational
methods for electromagnetic propagation (see, e.g., [14]) and
the enhancement of computer speed, this latter becomes less
of a burden.

Therefore, in this article, we are interested in introducing
the Kohn-Vogelius formulation to the electromagnetic inverse
scattering problem. Furthermore, a Nesterov accelerated gra-
dient descent is used to solve the optimization problem.

The remaining of the article is organized as follows. Sec-
tion II introduces the notation, the forward problem, and
the inverse problem we are interested in. Section III focuses
on the shape optimization-based inversion technique using
the Kohn-Vogelius cost functional. Section IV is dedicated
to the numerical tests and highlights the advantages of the
proposed formulation. Section V concludes the paper and gives
perspectives for future works.

II. THE INVERSE PROBLEM

A. Notations

Let us begin by introducing the notations used in this paper.
We point out that the vectors are denoted in bold, such as V . In
the following, Ω denotes a non-empty bounded open set of R2,
with a boundary ∂Ω. The exterior unit normal to ∂Ω is denoted
by n, and, for a smooth function u, the normal derivative
is ∂nu = ∇u · n. For a given complex number z, we denote
by <(z) its real part, by =(z) its imaginary part, and by z̄ its
complex conjugate. The imaginary unit is denoted by j and a
exp(jωt) time dependence is assumed in this work, where ω
is the angular frequency. The frequency is denoted by f , and
k = 2πf

c corresponds to the wave number, where c is the speed
of light. Besides, the Cartesian coordinates system (x, y) is
used hereafter.

We here consider the scattering of a given Perfectly Metallic
Conductor (PEC), denoted by O with a smooth boundary ∂O,
strictly included in the domain Ω. We assume that in Ω\O,
the permittivity and the permeability are respectively given by
ε = ε0 and µ = µ0: it corresponds to the free-space. Moreover
we assume that ∂Ω is divided into two non empty open sub-
domains Γm and Γc such that Γm ∪ Γc = ∂Ω and Γm∩Γc = ∅
(Γm will represent the subset where the measurements are
made and Γc is its complement). Both sub-domains are not



necessarily connected and can then consist of multiple pieces.
The incident and scattered waves are denoted by ui and us,
respectively. The incident wave is assumed to be a plane wave
with an angle of incidence from the x-axis denoted by θi, and
an amplitude of ui0 . The total field u corresponds to the sum
of both such that

u = ui + us.

The notations are pictured in Fig. 1, with the target O in red.
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Fig. 1. Example of the considered domain Ω with the scatterer O (in red)
inside.

B. The considered inverse obstacle problem
Since the object is considered to be a PEC, the mathematical

formulation of the forward problem is as follows ∆u+ k2u = 0 in Ω\O,
∂nu+ jku = h on ∂Ω,

u = 0 on ∂O.
(1)

In this problem, we define

h = j(k − ki(θi) · n)ui0 exp(−jki(θi) · r),

where ki corresponds to the incident wave vector given by

ki = −k (cos(θi), sin(θi)),

and r = (xM , yM ) is the position of a point M ∈ Ω. This
problem corresponds to the bounded formulation of the open
scattering problem, where the boundary condition on ∂Ω is an
absorbing boundary condition introduced such that the field
respects the Sommerfeld condition.

The aim of this work is to numerically solve the correspond-
ing inverse obstacle problem, from boundary measurements.
More precisely, we assume that the measurements u = g is
known on Γm and we want to reconstruct the PEC O. Thus,
the inverse problem can be formulated as

Find O and the solution u ∈ H1(Ω\O) such that
∆u+ k2u = 0 in Ω\O,
∂nu+ jku = h on Γc,

u = 0 on ∂O,
∂nu = h̃ on Γm,
u = g on Γm,

where h̃ is defined by

h̃ = h− jkg.

III. A SHAPE OPTIMIZATION METHOD

A. Kohn-Vogelius formulation

In order to numerically solve the above inverse problem, a
first classical idea would be to consider the minimization of a
least squares cost functional as

J (O) =
1

2

∫
Γm

|u− g|2,

where g is the measured field and u is the computed field
solution of (1). This latter has the advantage of having a field u
that is only computed on Γm. By defining an adjoint problem,
the so-called shape gradient is computed and the gradient
descent method can be used to reconstruct an approximation
of O. This is a classical approach in the literature, e.g., in [1],
[2], [3], [10].

Here we propose to consider the minimization of a Kohn-
Vogelius type functional, more stable, and efficient in practice
(see, e.g., [12], [13]). The considered Kohn-Vogelius func-
tional is defined as

K(O) =
1

2

∫
Ω\O
|∇(uD − uN)|2, (2)

where uD is the unique solution to the following boundary
problem 

∆uD + k2uD = 0 in Ω\O,
∂nuD + jkuD = h on Γc,

uD = g on Γm,
uD = 0 on ∂O,

(3)

and uN is the unique solution to the following boundary
problem 

∆uN + k2uN = 0 in Ω\O,
∂nuN + jkuN = h on Γc,

∂nuN = h̃ on Γm,
uN = 0 on ∂O.

(4)

It should be noted that ifO is solution to the inverse problem
(with an associated field u), then u = uD = uN and then O is
obviously a minimizer of K. Conversely, if O is a minimizer
of K and if we assume that the minimum is zero, then uD =
uN, then the couple (O, uD) is solution to the inverse problem.
For these reasons, it is reasonable to consider the minimization
of K in order to solve the original inverse problem.

B. Shape gradient computation

In order to minimize the above Kohn-Vogelius func-
tional, we will compute its shape gradient. Roughly speak-
ing, the shape gradient of K at O is obtained by comput-

ing lim
t→0

K(Ot)−K(O)

t
, where Ot = (I + tV )(O) is a

perturbation of the domain O, with t 6= 0 and V a direction
perturbation (see, e.g., [15], [16] for details on the notion of
shape derivatives). It is well-known from a structural result



(see, e.g., [15, Theorem 5.9.2]) that the shape gradient can be
expressed as

∇K(O) · V =

∫
∂O

ϕ(O) (V · n) ,

where ϕ is a function independent of V but which may
depend on the considered forward problems and some adjoint
problems. This means that only the modifications on the
geometry along the normal of the shape have effects on the
cost functional. Note that results on the existence of the shape
derivatives concerning our problem have been proven in [1].

In order to compute the shape gradient, we introduce the
solutions w and z to the respective two following adjoint
problems

∆w + k2w = −k2(uD − uN) in Ω\O,
∂nw + jkw = −jk(uD − uN) on Γc,

∂nw = 0 on Γm,
w = 0 on ∂O,

(5)

and 
∆z + k2z = −k2(uD − uN) in Ω\O,
∂nz + jkz = ∂n(uD − uN) on Γc,

z = 0 on Γm,
z = 0 on ∂O.

(6)

In a few words, the first one allows putting to 0 the integral
over Neumann boundaries in the calculation of the shape
derivative, while the second one sets to 0 the Dirichlet ones.
Using uD, uN, w and z solutions to Problems (3), (4), (5)
and (6), the shape gradient can be expressed as

∇K(O) · V = <
(∫

∂O

(
∂nuD (∂nz − ∂n(uD − uN))−

∂nw∂nuN +
1

2
|∇(uD − uN)|2

)
(V · n)

)
. (7)

Notice that, in order to compute its shape gradient, we have
to solve, at each iteration, four partial differential equations
of the same type. Indeed, only the source term is different,
thus it is not too expensive numerically. If we consider the
least squares based functional, only two problems have to be
solved (a forward and an adjoint problem). However, the main
advantage of this approach is that we obtain better robustness
and numerical stability.

C. Numerical inversion strategy

From now on, the aim is to numerically minimize the Kohn-
Vogelius functional (2), that is to approach the solution to the
following optimization problem

min
O∈Uad

K(O),

on a set Uad of admissible shapes. Here we consider a
truncated Fourier series parametrization for the boundary of

the object O. Thus, the optimization works on each of the
Fourier coefficients, such that

∂O =
{

(xc, yc)t + r(cos(Θ), sin(Θ))t

+

N∑
n≥1

(an, bn)(cos(nΘ), sin(nΘ))t(cos(Θ), sin(Θ))t,

Θ ∈ [0, 2π[
}
,

where the upper script t denotes the transpose, (xc, yc) is the
center, r is the radius, and where N ∈ N∗.

To solve this numerical problem, we have performed a
Nesterov gradient descent scheme with restart (see [17] for
details on the algorithm), using the shape gradient given
by (7). Indeed, the Nesterov gradient descent method allows
being faster than the usual gradient descent, since the step
is modified along the optimization process. In a few words,
if the usual gradient scheme can be seen as the descent of
the ball along a curve, here the speed of the ball is modified
along by accelerating it using a weighted combination of
the previous iterations, introducing a kind of inertia during
the descent process. Nevertheless, one problem is that, by
increasing the speed of convergence, one can go beyond the
minimum and increase the cost functional. Thus, a restart
strategy is introduced to overcome this problem.

Moreover, for better stability, we precise that the Fourier
coefficients are added one after another, after a given number
of iterations. More precisely, we first search for the center of
the object during a small number of iterations, then the radius
is also changed, and after that the coefficients are added one
after the other after Np iterations. The initial guess O0 is a
circle of center (xc0 , yc0) and radius r0.

IV. NUMERICAL TESTS

In this part, some numerical tests are performed on two
different shapes: an ellipse and a more complex one. In all
those tests, the different problems are solved using FreeFem++
(see [18]), which is a finite element based solver. For those
tests, artificial data are computed from the direct problem (1)
using a P2 finite element strategy on a coarse mesh. In order
to avoid the so-called inverse crime, Problems (3), (4), (5)
and (6), needed for the inversion strategy, are solved using
the P1 finite elements on a less coarse mesh. Also, the
results obtained with a least squares based cost functional are
provided for comparison.

A. Retrieving an ellipse

In this test, we aim to retrieve the ellipse provided in
Fig. 2, in plain line, i.e. its center, and both radii. The initial
guess is the circle pictured in Fig. 2, in red dotted line. The
domain Ω is a square and the measurements are performed on
the top, bottom, and right boundaries of Ω, pictured in green
in Fig. 2. The incident field ui is coming from θi = 90◦,
with a frequency of 3 MHz. The number of iterations for the
inversion strategy is here fixed to 400. One could also adjust
a stopping criterion on the accuracy of the results. Here the



center is searched for 5 iterations, then the radius is modified,
and after a Fourier mode is added each Np = 75 iterations.

In Fig. 2, we plot the obtained shapes, in orange dotted
lines, with both the least squares functional in Fig. 2(a) and
the proposed Kohn-Vogelius formulation in Fig. 2(b). In both
cases, the ellipse is well retrieved. Nevertheless, one can see
that the results with Kohn-Vogelius are a little bit better, in
particular at the bottom of the ellipse.

(a) Real and retrieved objects with the least squares cost
functional

(b) Real and retrieved objects with the Kohn-Vogelius func-
tional

Fig. 2. Real and approximated objects superposed.

For a better comparison, in Fig. 3, we plot the convergence
of both the least squares and the Kohn-Vogelius functionals.
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(a) Least squares cost functional con-
vergence
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(b) Kohn-Vogelius cost functional con-
vergence

Fig. 3. Evolution of both cost functionals with the number of iterations.

As expected for this simple shape, both methods rapidly
converge toward the results. After 100 iterations, the cost
functional is below 10−4.

B. Retrieving a more complex object

In this second test, we are looking for a more complex
shape O with a convexity, i.e. more Fourier parameters to
retrieve, and then some numerical instability in the reconstruc-
tion can be expected. The initial guess O0 is still a circle. Both
the real shape and the initial guess are provided in Fig. 4,
in plain and red dotted lines, respectively. As before, the
domain Ω is a square, and measurements are performed on
the top, bottom, and right boundary of Ω, pictured in green.
The initial field is a plane wave coming from θi = 45◦, with
a frequency of 3 MHz. Here, the total number of iterations is
set up to 200. As previously, for 5 iterations, we only search
for the center of O and then the radius is modified. After that,
each Np = 15 iterations, a Fourier mode is added to the search
space.

In Fig. 4, the final obtained shape with both the least
squares, in Fig. 4(a), and the Kohn-Vogelius, in Fig. 4(b),
functionals are plotted in orange dotted lines.

(a) Approximated object with least squares based shape inver-
sion

(b) Retrieved object with Kohn-Vogelius based shape inversion

Fig. 4. Real and obtained objects superposed for both cost functionals.

Here, we can see that the Kohn-Vogelius formulation out-
performs the least squares one. Indeed, after 200 iterations
with the Kohn-Vogelius functional, we retrieve almost exactly



the object O, while with the least squares one, the convex part
is not well retrieved. In both cases, the error at the bottom is
due to the fact that no measurements are performed on the
left side of the domain, and also since the field comes from
the upper right corner. However, this configuration leads to a
better approximation of the convex part.

To conclude on this test, we plot in Fig. 5 the convergence
of both functionals.
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(a) Least squares functional conver-
gence
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(b) Kohn-Vogelius functional conver-
gence

Fig. 5. Evolution of the least squares, in (a), and Kohn-Vogelius functionals
with respect to the number of iterations.

In Fig. 5, we can see that both methods converge in
almost 40 iterations here. Nevertheless, the results with the
Kohn-Vogelius formulation are more precise, the error is
almost half the one obtained with the least squares cost
functional. This latter was also seen with the retrieved objects.
Therefore, this test shows the advantage of the proposed
formulation, when aiming at retrieving complex objects.

V. CONCLUSION AND FUTURE WORKS

In this work, a shape optimization procedure is used for
the inverse scattering problem. To obtain better robustness
and numerical stability, a Kohn-Vogelius cost functional has
been introduced, in place of the widely used least squares
functional. The shape gradient for this function has been de-
rived, by introducing some appropriate adjoint problems. This
shape gradient is then used to solve the derived minimization
problem with a Nesterov accelerated gradient method with
restart.

Numerical tests have been performed on different shapes.
The Kohn-Vogelius formulation outperforms the least squares
functional in terms of accuracy and thus in terms of conver-
gence for a given error, especially in the case of complex
geometries. Nevertheless, this comes at a price on the com-
putation time, since twice as many more problems need to
be solved. Nevertheless, the problems are of the same type,
with only the source term being different, allowing efficient
numerical implementation.

In forthcoming work, in order to be more accurate in terms
of models, we will consider multiple sources and receptors
(e.g. antenna array, or a moving antenna in an anechoic
chamber). This should also improve the accuracy of the recon-
struction since different measures will be available. We also
aim to include a robust shape retrieval method with respect

to the noise on the measurements, following the work [17].
Finally, we are also investigating the introduction of different
media to account for more realistic environments and objects.
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