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Abstract – Split-step wavelet is a method for com-
puting the tropospheric long-range propagation of elec-
tromagnetic waves. It follows the same steps as split-step
Fourier, but the propagation is performed in the wavelet
domain instead of the Fourier domain. The efficiency of
the method is based on the fast wavelet transform of low
complexity and on the sparse representation using com-
pression. Nevertheless, the compression introduces an
error that accumulates while iterating. In this paper, we
propose a closed-form formula for the error that allows to
compute a priori the compression thresholds for a given
scenario and accuracy. Numerical experiments show the
relevance of the proposed approach.

1. Introduction

The tropospheric long-range propagation is a topic
of major interest for a large number of applications
in communication, surveillance, and navigation. The
parabolic wave equation (PWE) model [1] is widely used
in this context. In the literature, the PWE is iteratively
solved with split-step Fourier (SSF) by going back and
forth in the spectral and spatial domain [2, 3]. This
method allows to make large steps in the propagation di-
rection [1].

To accelerate the computation, wavelet-based
methods have been proposed in optics [12] and electro-
magnetics [5-7]. Recently, an efficient split-step wavelet
method (SSW) [6, 7, 15] has been introduced to solve
the PWE in electromagnetics in both 2D and 3D. This
method computes the field by marching on in distances
as SSF, but the propagation is performed in the wavelet
domain instead of the spectral domain. Each iteration
follows two steps. First, the field is decomposed in the
wavelet domain and compressed, introducing the signal
compression error (threshold Vs). Second, the coefficients
are propagated using a compressed wavelet-to-wavelet
propagator, introducing the propagator compression er-
ror (threshold Vp). These errors accumulate throughout
the propagation and need to be quantified. Indeed, Zhou
et al. [6] have shown that SSW is faster than SSF if a
good compression is performed.

The main contribution of this letter is that we derive
a theoretical formula of the accumulated compression er-
ror after Nx iterations. This allows to set both thresholds
a priori for a given accuracy and scenario. We also show

that the heuristic formula proposed in earlier works [6,10]
is too optimistic.

For conciseness, the method and the proof are de-
veloped in 2D. Nevertheless, the results remain valid in
3D using similar calculations. After a general presen-
tation of SSW (Section 2), the error formula is derived
(Section 3) and tested via numerical experiments (Sec-
tion 4) in 2D.

2. Overview of split-step wavelet

2.1. Configuration and discretization

In this article, an exp( jωt) time dependence is as-
sumed, where ω is the angular frequency. The domain
is 2D of size [0,xmax] in x and [0,zmax] in z. The field
is known at x = 0 and the source is placed at x ≤ 0.
On the z-axis a sampling is made with zpz = pz∆z and
pz ∈ {0, · · · ,Nz− 1}. On the x-axis a sampling is made
with xpx = px∆x and px ∈ {0, · · · ,Nx−1}.

2.2. Brief reminder of the discrete wavelet
transform

The wavelet family is computed by dilating and
translating a mother wavelet of zero mean on L levels [4].
Dilations allow covering the lower parts of the spectrum.
To obtain an orthonormal basis, a scaling function of non-
zero mean is added. This function covers the lowest part
of the spectrum. Using this basis, a multi-level decom-
position is obtained. We recall one important property of
the wavelets used in the following demonstrations. The
number of vanishing moments nv of a wavelet ψ is de-
fined as

∀k ∈ [0,nv],
∫

zk
ψ(z)dz = 0. (1)

This property describes how well a wavelet decompo-
sition can approach a smooth function with few coeffi-
cients.

2.3. An overview of SSW

SSW computes the field iteratively by going back
and forth from the wavelet to the spatial domains. As for
the SSF, the refraction and relief are taken into account in
the spatial domain, thus we only describe the free-space
propagation part. The initial field u0 is supposed known.



Denoting upx the field and Upx its wavelet decom-
position at distance px∆x, a step of SSW is computed as
follows. First the wavelet coefficients Upx are computed
by applying a FWT on upx (denoted W). Then, the coef-
ficients are compressed (operator CVs ) with a hard thresh-
old Vs (i.e., all coefficients below Vs are set to 0). A sparse
vector of size Nz is obtained. This first compression re-
peated on Nx horizontal steps induces an error term de-
noted by δ s

Nx
.

Then, the coefficients are propagated using a pre-
computed matrix P

Upx+1 = PCVsUpx . (2)

This sparse matrix contains all the wavelet-to-wavelet
propagations and is of size (Nz,Nz) [6]. A compression
with hard threshold Vp is performed. Iterated Nx times,
this second term of error in the method is denoted by δ m

Nx
.

The free-space propagated field is obtained by coming
back in the space domain using an inverse FWT. The to-
tal compression error is denoted by δNx = δ s

Nx
+δ m

Nx
.

In [6] the experimental upper bound was supposed
to be of order N0.5

x Vs and NxVp for the signal and propaga-
tor compressions, respectively. We derive here new and
more accurate expressions.

3. Derivation of the compression error
formula

In the following section, we introduce the nor-
malised thresholds vs and vp such that Vs = vs‖U0‖∞ and
Vp = vp‖P‖max [4, 8]. We also remind that the operator
norm of P corresponds to

‖P‖op = sup
U 6=0
‖PU‖2/‖U‖2. (3)

From power conservation, the operator norm of the free-
space propagator P is equal to 1 (‖P‖op = 1). If there
are no evanescent waves and the propagation does not
reach any boundaries, then we have ‖Pu‖2 = ‖u‖2. In
other cases (apodization, environment losses, evanescent
waves, ...), then we have ‖Pu‖2 ≤ ‖u‖2.

3.1. Signal compression error

The objective of this section is to study how the
signal compression error accumulates with Nx. We first
assume that Vs 6= 0 and Vp = 0. The propagator has no
compression. The error due to the threshold Vs on signal
(operator CVs ) after Nx iterations is defined by

δ
s
Nx = ‖ŨNx −UNx‖2/‖U0‖2, (4)

with ŨNx = (PCVs)
NxU0 and UNx = PNxU0 the compressed

and uncompressed propagated coefficients, respectively.

For one iteration, the error is given by

δ
s
1 = ‖PCVsU0−PU0‖2/‖U0‖2. (5)

We introduce ε0 the compression term due to CVs defined
by

CVsU0 =U0 + ε
0. (6)

Using (3) and introducing (6) in (5) we obtain δ s
1 ≤

‖ε0‖2/‖U0‖2. For the smooth signals we are manipu-
lating the wavelet coefficients decrease exponentially to
0 [4, 8]. Therefore, we rewrite the norm of the error as
follows

‖ε‖2
2 = v2

s‖U0‖2
∞

Nz−M−1

∑
m=0

|ε̂0
m|2, (7)

with the coefficients |ε̂0
m| ≤ 1 corresponding to the nor-

malised amplitudes of the wavelet coefficients of the er-
ror indexed in decreasing order, and M� Nz the number
of significant coefficients. Following [4, 8, 9], error com-
ponents are bounded by

|ε̂0
m| ≤Cε(m+1)−nv , (8)

with m ∈ [0,Nz−M−1], nv the number of vanishing mo-
ments and Cε a constant depending only on the smooth-
ness of the field and of the wavelets. Putting (8) in (7), an
upper bound for ‖ε0‖2 is obtained

‖ε0‖2 ≤ vs‖U0‖∞Cε

√√√√Nz−M−1

∑
m=0

(m+1)−2nv . (9)

For nv ≥ 2 the sum converges close to 1 (e.g. for nv = 2
the sum is about 1.082). Also, Cε is inferior or close to 1
as illustrated with numerous numerical tests in Section 4
and in [14].

Thus, the bound on the error due to signal compres-
sion after one iteration is given by

‖ε0‖2 . vs‖U0‖2 and δ
s
1 . vs, (10)

where . means inferior or close to as widely used in the
wavelet community [4, 8]. In practice, this result shows
a very good accuracy with numerous numerical tests per-
formed in [6, 11].

For 2 iterations, we compare the propagations with
and without compression

δ
s
2 = ‖(PCVs)(PCVs)U0−PPU0‖2/‖U0‖2. (11)

We define the second compression error ε1 such as
CVs

(
PU0 +Pε0

)
= PU0 + Pε0 + ε1. The expression of

the error is calculated as

δ
s
2 = ‖PPU0 +PPε

0 +Pε
1−PPU0‖2/‖U0‖2,

≤
(
‖ε0‖2 +‖ε1‖2

)
/‖U0‖2.

(12)



Supposing (10) is true for the 2nd iteration, we obtain

‖ε1‖2/‖U0‖2 . vs(‖U0‖2 +‖ε0‖2)/‖U0‖2. (13)

Since, with appropriate threshold, ‖ε0‖2 is negligible to
‖U0‖2, we have δ s

2 . 2vs. By induction, the signal com-
pression error after Nx horizontal iterations fulfills

δ
s
Nx . Nxvs. (14)

The appropriate threshold Vs = vs‖U0‖∞ can now be com-
puted with (14). The same study is now performed on the
error due to the compression of the propagator P in (2).

3.2. Propagator compression error

We now assume that Vs = 0 and Vp 6= 0. The er-
ror δ

p
Nx

due to the compression of the propagator after Nx
iterations is studied. It is defined by

δ
p
Nx

= ‖ŨNx −UNx‖2/‖U0‖2, (15)

where ŨNx corresponds to the coefficients propagated Nx
times with the compressed operator denoted as P+∆P.

From [8, pp 29–32], we have the norm operator of
∆P bounded by

‖∆P‖op = sup
U 6=0
‖∆PU‖2/‖U‖2 ≤ vp. (16)

For one iteration the expression of the error is given
by

δ
p
1 = ‖Ũ1−U1‖2/‖U0‖2 = ‖∆PU0‖2/‖U0‖2. (17)

Following (16), we have δ
p
1 ≤ vp. This result is in line

with the one obtained for optics [12].
Using the same notations and methodology as for 1

iteration and since ‖P‖op = 1, we obtain for 2 iterations
using (16)

δ
p
2 = ‖Ũ2−U2‖2/‖U0‖2,

≤ ‖∆PPU0‖2 +‖P∆PU0‖2 +‖∆P2U0‖2

‖U0‖2
,

≤ 2vp + v2
p.

(18)

Neglecting the term v2
p (vp � 1), δ m

2 is shown to be
smaller than or close to 2vp. By induction, we finally
obtain

δ
p
Nx

. vpNx. (19)

Formula (19) allows to choose the adequate threshold Vp
for a given error and scenario.

Assuming that both errors are independent, we fi-
nally derive a closed-form expression for the accumu-
lated compression error δNx . (vs + vp)Nx. In practice,

for a given maximum expected error δ max
Nx

and number of
iterations Nx, the normalised thresholds are computed as

vs = δ
max
Nx /(2Nx) and vp = δ

max
Nx /(2Nx). (20)

Thus, we derive the unnormalised thresholds

Vs =
δ max

Nx

2Nx
‖U0‖∞ and Vp =

δ max
Nx

2Nx
‖P‖max. (21)

4. Numerical tests

In this part, numerical experiments are performed
to show that the thresholds vs and vp can be managed to
assess a given final accuracy for a certain number of it-
erations Nx, using expressions (20). First, a short-range
simulation in free-space is performed to assess the accu-
racy of the formulas. Second, we perform a long-range
simulation with relief and refraction.

4.1. Free-space scenario

We perform the tests in 2D. The source is a uniform
aperture at f0 = 300 MHz of size 10 m and is placed at
zs = 1024 m in a domain of vertical size zmax = 2048 m.
The domain is of horizontal size xmax = 2000 m. The
steps are ∆x = 20 m and ∆z = 0.5 m. Thus, we have
Nx = 100. For the wavelet parameters, the symlet with
nv = 6 and a maximum level of L = 3 are chosen.

The RMS error between compressed and uncom-
pressed propagations is computed for different values of
Nx and compared to the closed-form formulas. Thresh-
olds are set to vs = vp = 1.6× 10−4 using (20) so as to
obtain an error of −30 dB at the final range.

First, we compute and plot in Figure 1 the constant
Cε ' ‖ε‖2/Vs at each step Nx. This shows that the con-
stant is inferior to or close to 1. Indeed, in this case,
the field is smooth. The approximation proposed in Sec-
tion 3.1 is relevant.
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Figure 1: Evolution of Cε with Nx.

The RMS error is computed and given in Figure 2.
As expected, Figure 2 shows that the closed-form formula
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Figure 2: Evolution of the RMS error.

for the compression error is never reached. The com-
puted thresholds allow to bound the error below the de-
sired maximum. We also compute a linear regression to
find the optimal α such that δ s

Nx
∼ vsNα

x and δ
p
Nx
∼ vpNα

x .
For the signal compression, we obtain α = 0.96 slightly
lower than the value proposed here, i.e., 1, but greater
than the heuristic value proposed in [6], i.e, 0.5. This
shows that the heuristic formula proposed in [6] was too
optimistic. For the propagator, α = 0.97 is obtained,
close to the value proposed here and in [6].

Numerical tests show the relevancy of the proposed
formulas (20). Therefore, it can be used to tune the
thresholds needed in SSW to obtain a given accuracy. In
the next section, a numerical test in realistic conditions is
performed.

4.2. Realistic scenario

The propagation of a complex source point (CSP)
in a domain with a trilinear atmosphere and two trian-
gular reliefs is computed. The CSP parameters are: a
frequency f = 300 MHz, with coordinates xw0 =−50 m
and zs = 50 m, with a waist size of W0 = 5 m. We con-
sider an atmosphere described by a trilinear duct [13] of
base height zb = 241 m, thickness zt = 391 m and gradi-
ent c2 =−0.5 M-units/m in the duct and c0 = 0.118 M-
units/m elsewhere. On the ground, we choose M0 =
330 M-units. The relief is chosen as 2 small triangles
of heights 100 m and 200 m. The impedance ground is of
parameters εr = 20.0 and σ = 0.02 S/m.

The domain is of size xmax = 100 km in horizontal
and zmax = 2048 m in vertical. An apodization window
is added on top of the domain. The grid size is 200 m in
horizontal and 0.5 m in vertical. We aim at obtaining an
error of−30 dB at the final iteration. From (20) we apply
the thresholds vs = vp = 3.16×10−5.

In Figure 3, the field in dBV/m is plotted in (a) and
the RMS error evolution is plotted in (b). We can see that

the bound is not reached and that the final error is signif-
icantly smaller than the desired error. This is mostly due
to the apodization layer in which energy is leaving the
computational domain, reducing the total error. There-
fore, our formula is conservative in a realistic domain, as
expected.

(a) Field obtained with SSW (dBV/m).
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Figure 3: Results for the realistic test case.

5. Conclusion

In this letter, we have derived a closed-form expres-
sion for the accumulated compression error in split-step
wavelet (SSW). This formula allows to tune the thresh-
olds Vs and Vp for a given accuracy.

First, we have given an overview of SSW to show
where thresholds are applied. The compressions on the
signal Vs on the propagator Vp introduce errors. We de-
rived how each error accumulates while iterating to ob-
tain a closed-form expression for the compression error.
This latter allows to set a priori Vs and Vp for a given ac-
curacy and scenario. Finally, numerical tests in 2D have
been performed. Our proposed bounds are never reached,
as expected, which shows their relevancy.

To conclude, the expression obtained in this article
for the accumulated compression error is used in SSW
[15] to tune Vs and Vp for a given accuracy.
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